Lycée H.P. Manouba

4^{éme} Math

Année scolaire: 2008-2009

Epreuve de : Mathématiques

DEVOIR DE CONTROLE N°1

Date: Vendredi 05/11/2007 Durée: 2 heures

Proposé par : Mr BEN ALI

Exercice $n^{\circ}1$: (5 pts)

- 1) Soit la fonction g définie sur \mathbb{R} par : $g(x) = 3x + 2\sin x$
 - a) Montrer que pour tout x de \mathbb{R} ; $3x-2 \le g(x) \le 3x+2$.
 - b)En déduire $\lim_{x\to +\infty} g(x)$ et $\lim_{x\to -\infty} g(x)$.
- 2) Soit la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} \frac{x}{g(x)} & \text{si } x > 0 \\ x^3 3x + \frac{1}{5} & \text{si } x \le 0 \end{cases}$ et C_f sa courbe représentative dans un

repère orthonormé ($0, \vec{i}, \vec{j}$).

- a) Montrer que f est continue en 0.
- b) Montrer que pour tout $x > \frac{2}{3}$; $\frac{x}{3x+2} \le f(x) \le \frac{x}{3x-2}$.
- c) En déduire $\lim_{x\to +\infty} f(x)$. Interprète géométriquement le résultat
- 3) Montrer que l'équation f(x) = 0 admet une solution α dans [-2, -1[.

Exercice $n^{\circ}2$: (6 pts)

Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = 2$ et $u_{n+1} = \frac{u_n^2 - u_n + 2}{1 + u_n}$; $\forall n \in \mathbb{N}$

- 1) a) Montrer que pour tout n de \mathbb{N} ; $1 < u_n \le 2$
 - b) Montrer que la suite (u_n) est décroissante.
 - c) En déduire que (u_n) est convergente et calculer sa limite .
- 2) a) Montrer que pour tout n de \mathbb{N} on a : $0 < u_{n+1} 1 \le \frac{1}{3} (u_n 1)$.
 - b) En déduire que pour tout n de $\mathbb{N}: 0 < u_n 1 \le \left(\frac{1}{3}\right)^n$. Retrouver alors $\lim_{x \to +\infty} u_n$.
- 3) On pose: $S_n = \sum_{k=1}^n u_k \quad \forall n \in \mathbb{N}^*$.
 - a) Montrer que pour tout n de \mathbb{N}^* on a : $n < S_n \le n + \frac{1}{2} (1 \left(\frac{1}{3}\right)^n)$.
 - **b**) En déduire $\lim_{x\to +\infty} S_n$ et $\lim_{x\to +\infty} \frac{S_n}{n}$

Exercice $n^{\circ}3$: (5 pts)

Soit $\theta \in \left]0; \frac{\pi}{2}\right[$ et pour tout $z \in \mathbb{C}$ on pose $P(z) = 2z^3 - (3 + 2i\sin 2\theta)z^2 + (1 + 2i\sin 2\theta)z - \frac{1}{2}i\sin 2\theta$.

- 1) a- Calculer $P\left(\frac{1}{2}\right)$. En déduire le nombre complexe b vérifiant $P(z) = \left(z \frac{1}{2}\right)\left(2z^2 + bz + i\sin 2\theta\right)$.
 - b-Résoudre, dans \mathbb{C} , l'équation P(z) = 0. On note z_0 la solution réel et z_1 et z_2 les autre solutions.
 - **c-**Mettre z_1 et z_2 sous-forme exponentielle.

2) Dans le plan complexe rapporté à un repère orthonormé $\left(O,\vec{u},\vec{v}\right)$ on considère les points A, M_1 et M_2

d'affixes respectifs
$$z_0 = \frac{1}{2}$$
; $z_1 = \frac{1 + e^{i2\theta}}{2}$ et $z_2 = \frac{1 - e^{-i2\theta}}{2}$

- **a-** Montrer que, pour tout $\theta \in \left]0; \frac{\pi}{2}\right[$, le triangle AM_1M_2 est isocèle en A.
- **b-** Pour quelle valeur de θ le triangle AM_1M_2 est équilatéral .
- **c-** Quel est l'ensemble des point M_1 lorsque θ varie dans $0; \frac{\pi}{2}$

Exercice n°4: (4 pts)

- 1) Cette question constitue une restitution organisée de connaissances
 - **a-** Soient a, b, c et d des entiers relatifs.

Démontrer que si $a \equiv b \mod (7)$ et $c \equiv d \mod (7)$ alors $ac \equiv bd \mod (7)$.

b- En déduire que : pour a et b entiers relatifs non nuls

si $a \equiv b \mod (7)$ alors pour tout entier naturel $n, a^n \equiv b^n \mod (7)$.

- 2) Pour a = 2 puis pour a = 3, déterminer un entier naturel n non nul tel que $a^n \equiv 1 \mod(7)$.
- 3) Soit a un entier naturel non divisible par 7.
 - **a-** Montrer que : $a^6 \equiv 1 \mod(7)$.
- **b-** On appelle *ordre* de $a \mod (7)$, et on désigne par k, le plus petit entier naturel non nul tel que $a^k \equiv 1 \mod (7)$. Montrer que le reste r de la division euclidienne de 6 par k vérifie $a^r \equiv 1 \mod 7$.
- **c-**En déduire que *k* divise 6. Quelles sont les valeurs possibles de *k*?
- **d-** Donner l'ordre modulo 7 de tous les entiers *a* compris entre 2 et 6.
- 4) À tout entier naturel n, on associe le nombre $A_n = 2^n + 3^n + 4^n + 5^n + 6^n$. Montrer que $A_{2008} \equiv 6 \mod (7)$.

FIN.

